

OXYGEN ANALYSER

The **JOK'AIR** has been specially designed for measuring the partial pressure of oxygen of reaction mixtures.

Like every **SETNAG** analysers, the **JOK'AIR** works with our zirconia probe MicroPoas®¹.

The JOK'AIR allows:

- Measure and display of the oxygen partial pressure from 10³⁰ to 0,25 atm.
- Transfer data to a PC via an RS232 link.

1 - Patent ANVAR/CNRS/UNIV. Grenoble.

ITS STRENGTHS

- Atmosphere control
- Measurement of oxygen partial pressure from 10³⁰ to 0,25 atm
- Short response time
- Quick and easy to use

- Reliability and reproducibility
- Limited maintenance and servicing
- Excellent measurement stability

TECHNICAL DATA

MESURING PRINCIPALE	MicroPoas®, zirconia probe with internal metal reference
MEASUREMENT RANGE	10^{30} to 0.25 atm O_2^*
USEFUL FLOW	From 1 to 12 l/h
REPONSE TIME	MicroPoas <2s
ACCURACY	2% of the measurement
OUTPUT SIGNAL	RS232 protocol proprietary
DIAGNOSTIC	Display of operating parameters, indication of the type of default
DIMENSIONS AND WEIGHT	Rack 19": 482 x 133 x 360 mm – 8 kg
POWER SUPPLY AND CONSUMPTION	115 - 230 Vac – 50/60 Hz – 125 VA
OPERATING CONDITIONS	Temperature: 0 to 55°C Humidity: 5 to 90% non-condensing

^{*}Measuring traces of oxygen with a zirconia probe is tricky because the presence of traces of impurities such as combustible compounds can create instability. This is particularly true in the 10° to $10^{\circ 2}$ atm O_2 range. The use of buffered mixtures makes it possible to generate reducing atmospheres in a controlled manner.

OPTIONS

- Mass flowmeter
- RS485 ModBus protocol

Please contact us

Supplied with:

- RS232 cable
- Power cable
- Windows data acquisition software

